Linking with other common formats and microbiome data science frameworks.
Open data resources
Open microbiome data sets readily available in TreeSummarizedExperiment format via curatedMetagenomicData, EBI MGnify, Bioconductor ExperimentHub, and packages.
Minimal example
Cross-correlating taxonomic and metabolomic profiles from a dietary intervention study in mice (Hintikka et al. 2021).
library(mia)# Import data and renamedata("HintikkaXOData")mae <- HintikkaXOData# Agglomerate rare taxa by prevalence at the Family level & log10-transform read countsmae[["microbiota"]] <-agglomerateByPrevalence(mae[["microbiota"]], rank ="Family")mae[["microbiota"]] <-transformAssay(mae[["microbiota"]], method ="clr", pseudocount =1)# Get cross-correlation between taxa & metabolitesx <-testExperimentCrossAssociation(mae, experiment1 ="microbiota", experiment2 ="metabolites",assay.type1 ="clr", assay.type2 ="nmr",mode ="matrix", sort =TRUE)$cor# Visualize taxa-metabolite associations on heatmapComplexHeatmap::Heatmap(x)
Documentation: OMA Gitbook (beta)
Complements other Bioconductor Gitbooks; overlapping methods and analysis strategies: microbiome.github.io/OMA
Community
Coordination: Tuomas Borman, Leo Lahti
Giulio Benedetti, Yağmur Şimşek, Basil Courbayre, Jeba Akewak, Daena Rys, Henrik Eckermann, Chouaib Benchraka, Rajesh Shigdel, Artur Sannikov, Lu Yang, Renuka Potbhare, S. A. Shetty, R. Huang, F. G.M. Ernst, D. J. Braccia, H. C. Bravo; 20+ contributors, 10+ countries. Welcome to join!
Figure source: Moreno-Indias et al. (2021) Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions. Frontiers in Microbiology 12:11.
TreeSummarizedExperiment
Optimal container for microbiome data integration?
Improve interoperability, ensure sustainability.
Multiple assays
seamless interlinking
Side information
extended capabilities & data types
Hierarchical data
both samples & features
Optimized
speed & memory
Integrated
other applications & frameworks
Data integration in microbiomics
Scaling up sample size (cohorts & meta-analyses)
Complementary pipelines
Alternative experiments (e.g. 16S, metagenome, phylogenetic microarrays)