R/AllGenerics.R, R/calculateDMM.R
calculateDMN.RdThese functions are accessors for functions implemented in the
DirichletMultinomial
package
calculateDMN(x, ...)
getDMN(x, name = "DMN", ...)
bestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"), ...)
calculateDMNgroup(x, ...)
performDMNgroupCV(x, ...)
getBestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"), ...)
# S4 method for class 'ANY'
calculateDMN(
x,
k = 1,
BPPARAM = SerialParam(),
seed = runif(1, 0, .Machine$integer.max),
...
)
# S4 method for class 'SummarizedExperiment'
calculateDMN(
x,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...
)
runDMN(x, name = "DMN", ...)
# S4 method for class 'SummarizedExperiment'
getDMN(x, name = "DMN")
# S4 method for class 'SummarizedExperiment'
bestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"))
# S4 method for class 'SummarizedExperiment'
getBestDMNFit(x, name = "DMN", type = c("laplace", "AIC", "BIC"))
# S4 method for class 'ANY'
calculateDMNgroup(
x,
variable,
k = 1,
seed = runif(1, 0, .Machine$integer.max),
...
)
# S4 method for class 'SummarizedExperiment'
calculateDMNgroup(
x,
variable,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...
)
# S4 method for class 'ANY'
performDMNgroupCV(
x,
variable,
k = 1,
seed = runif(1, 0, .Machine$integer.max),
...
)
# S4 method for class 'SummarizedExperiment'
performDMNgroupCV(
x,
variable,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
transposed = FALSE,
...
)a numeric matrix with samples as rows or a
SummarizedExperiment
object.
optional arguments not used.
Character scalar. The name to store the result in
metadata
Character scalar. The type of measure used for the
goodness of fit. One of ‘laplace’, ‘AIC’ or ‘BIC’.
Numeric scalar. The number of Dirichlet components to fit.
See dmn. (Default: 1)
A
BiocParallelParam
object specifying whether the calculation should be parallelized.
Numeric scalar. Random number seed. See
dmn
Character scalar. Specifies the name of the
assay used in calculation. (Default: "counts")
Deprecated. Use assay.type instead.
Deprecated. Use assay.type instead.
Logical scalar. Is x transposed with samples
in rows? (Default: FALSE)
Character scalar. A variable from colData to
use as a grouping variable. Must be a character of factor.
calculateDMN and getDMN return a list of DMN objects,
one element for each value of k provided.
bestDMNFit returns the index for the best fit and getBestDMNFit
returns a single DMN object.
calculateDMNgroup returns a
DMNGroup object
performDMNgroupCV returns a data.frame
DMN-class,
DMNGroup-class,
dmn,
dmngroup,
cvdmngroup ,
accessors for DMN objects
fl <- system.file(package="DirichletMultinomial", "extdata", "Twins.csv")
counts <- as.matrix(read.csv(fl, row.names=1))
fl <- system.file(package="DirichletMultinomial", "extdata", "TwinStudy.t")
pheno0 <- scan(fl)
lvls <- c("Lean", "Obese", "Overwt")
pheno <- factor(lvls[pheno0 + 1], levels=lvls)
colData <- DataFrame(pheno = pheno)
tse <- TreeSummarizedExperiment(assays = list(counts = counts),
colData = colData)
library(bluster)
# Compute DMM algorithm and store result in metadata
tse <- addCluster(tse, name = "DMM", DmmParam(k = 1:3, type = "laplace"),
by = "samples", full = TRUE)
# Get the list of DMN objects
metadata(tse)$DMM$dmm
#> [[1]]
#> class: DMN
#> k: 1
#> samples x taxa: 278 x 130
#> Laplace: 39227.38 BIC: 39527.91 AIC: 39292.11
#>
#> [[2]]
#> class: DMN
#> k: 2
#> samples x taxa: 278 x 130
#> Laplace: 38872.38 BIC: 39586.79 AIC: 39113.38
#>
#> [[3]]
#> class: DMN
#> k: 3
#> samples x taxa: 278 x 130
#> Laplace: 38854.25 BIC: 40001.15 AIC: 39290.14
#>
# Get and display which objects fits best
bestFit <- metadata(tse)$DMM$best
bestFit
#> [1] 3
# Get the model that generated the best fit
bestModel <- metadata(tse)$DMM$dmm[[bestFit]]
bestModel
#> class: DMN
#> k: 3
#> samples x taxa: 278 x 130
#> Laplace: 38854.25 BIC: 40001.15 AIC: 39290.14
# Get the sample-cluster assignment probability matrix
head(metadata(tse)$DMM$prob)
#> 1 2 3
#> TS1.2 9.999997e-01 2.999029e-07 4.862617e-09
#> TS10.2 9.516064e-01 8.380292e-09 4.839364e-02
#> TS100.2 4.435290e-08 8.565718e-02 9.143428e-01
#> TS100 9.919495e-01 8.050077e-03 4.122431e-07
#> TS101.2 1.352312e-12 4.163564e-07 9.999996e-01
#> TS103.2 9.999977e-01 7.470625e-10 2.313109e-06
# Get the weight of each component for the best model
bestModel@mixture$Weight
#> [1] 0.5655827 0.2227233 0.2116940