Perform non-metric multi-dimensional scaling (nMDS) on samples, based on the
data in a SingleCellExperiment
object.
getNMDS(x, ...)
# S4 method for class 'ANY'
getNMDS(
x,
FUN = vegdist,
nmds.fun = nmdsFUN,
nmdsFUN = c("isoMDS", "monoMDS"),
ncomponents = 2,
ntop = 500,
subset.row = subset_row,
subset_row = NULL,
scale = FALSE,
transposed = FALSE,
keep.dist = keep_dist,
keep_dist = FALSE,
...
)
# S4 method for class 'SummarizedExperiment'
getNMDS(
x,
...,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
FUN = vegdist
)
# S4 method for class 'SingleCellExperiment'
getNMDS(
x,
...,
assay.type = assay_name,
assay_name = exprs_values,
exprs_values = "counts",
dimred = NULL,
ndimred = n_dimred,
n_dimred = NULL,
FUN = vegdist
)
calculateNMDS(x, ...)
addNMDS(x, ..., altexp = NULL, name = "NMDS")
runNMDS(x, ...)
additional arguments to pass to FUN
and
nmds.fun
.
Function
or Character scalar
. A value with a
function name returning a dist
object
Character scalar
. A value to choose the scaling
implementation, either “isoMDS” for
MASS::isoMDS
or “monoMDS” for
vegan::monoMDS
Deprecated. Use nmds.fun
instead.
Numeric scalar
. Indicates the number of DPCoA
dimensions to obtain. (Default: 2
)
Numeric scalar
. Specifies the number of features with the
highest variances to use for dimensionality reduction. Alternatively
NULL
, if all features should be used. (Default: NULL
)
Character Vector
. Specifies the subset of features
to use for dimensionality reduction. This can be a character vector of row
names, an integer vector of row indices or a logical vector.
(Default: NULL
)
Deprecated. Use subset.row
instead.
Logical scalar
. Should the expression values be
standardized? (Default: FALSE
)
Logical scalar
. Specifies if x is transposed with
cells in rows. (Default: FALSE
)
Logical scalar
. Indicates whether the dist
object calculated by FUN
should be stored as ‘dist’ attribute
of the matrix returned/stored by getNMDS
/ addNMDS
. (Default:
FALSE
)
Deprecated. Use keep.dist
instead.
Character scalar
. Specifies which assay to use for
calculation. (Default: "counts"
)
Deprecated. Use assay.type
instead.
Deprecated. Use assay.type
instead.
Character scalar
or integer scalar
. Specifies
the existing dimensionality reduction results to use.
integer vector
. Specifies the dimensions to use if
dimred is specified.
Deprecated. Use ndimred
instead.
Character scalar
or integer scalar
. Specifies an
alternative experiment containing the input data. (Default: NULL
)
Character scalar
. A name for the column of the
colData
where results will be stored. (Default: "NMDS"
)
For getNMDS
, a matrix is returned containing the MDS
coordinates for each sample (row) and dimension (column).
For addNMDS
a SingleCellExperiment
Either MASS::isoMDS
or
vegan::monoMDS
are used internally to compute
the NMDS components. If you supply a custom FUN
, make sure that
the arguments of FUN
and nmds.fun
do not collide.
MASS::isoMDS
,
vegan::monoMDS
for NMDS component calculation.
plotMDS
, to quickly visualize the
results.
# generate some example data
mat <- matrix(1:60, nrow = 6)
df <- DataFrame(n = c(1:6))
tse <- TreeSummarizedExperiment(assays = list(counts = mat),
rowData = df)
#
getNMDS(tse)
#> initial value 0.383462
#> iter 5 value 0.161655
#> iter 10 value 0.113278
#> final value 0.003270
#> converged
#> [,1] [,2]
#> [1,] -0.60647893 0.282119175
#> [2,] -0.38097446 -0.130374816
#> [3,] -0.17579928 -0.184259003
#> [4,] -0.02959516 -0.158516980
#> [5,] 0.09082607 -0.111879947
#> [6,] 0.14427170 -0.047910688
#> [7,] 0.20118089 -0.001837781
#> [8,] 0.22817639 0.061022767
#> [9,] 0.25717122 0.116809029
#> [10,] 0.27122156 0.174828245
#> attr(,"Stress")
#> [1] 0.003269857
#
data(esophagus)
esophagus <- addNMDS(esophagus, FUN = vegan::vegdist, name = "BC")
#> initial value 0.000000
#> final value 0.000000
#> converged
esophagus <- addNMDS(esophagus, FUN = vegan::vegdist, name = "euclidean",
method = "euclidean")
#> initial value 0.000000
#> final value 0.000000
#> converged
reducedDims(esophagus)
#> List of length 2
#> names(2): BC euclidean