plotAbundance()
creates a barplot of feature abundances, typically
used to visualize the relative abundance of features at a specific taxonomy
rank.
plotAbundance(x, ...)
# S4 method for class 'SummarizedExperiment'
plotAbundance(
x,
assay.type = assay_name,
assay_name = "counts",
layout = "bar",
...
)
a
SummarizedExperiment
object.
additional parameters for plotting.
group
: Character scalar
. Specifies the group for
agglomeration. Must be a value from colnames(rowData(x))
. If
NULL
, agglomeration is not applied. (Default: NULL
)
as.relative
: Character scalar
. Should the relative
values be calculated? (Default: FALSE
)
col.var
: Character scalar
. Selects a column from
colData
to be plotted below the abundance plot.
Continuous numeric values will be plotted as point, whereas factors and
character will be plotted as colour-code bar. (Default: NULL
)
order.row.by
: Character scalar
. How to order abundance
value. By name ("name"
) for sorting the taxonomic labels
alphabetically, by abundance ("abund"
) to sort by abundance
values or by a reverse order of
abundance values ("revabund"
). (Default: "name"
)
row.levels
: Character vector
. Specifies order of rows
in a plot. Can be combined with order.row.by
to control order
of only certain rows. If NULL
, the order follows
order.row.by
. (Default: NULL
)
order.col.by
: Character scalar
. from the chosen rank of
abundance data or from colData
to select values to order the
abundance plot by. (Default: NULL
)
col.levels
: Character vector
. Specifies order of
columns in a plot. Can be combined with order.col.by
to control
order of only certain columns. If NULL
, the order follows
order.col.by
. (Default: NULL
)
decreasing
: Logical scalar
. If the order.col.by
is defined and the values are numeric, should the values used to order in
decreasing or increasing fashion? (Default: FALSE
)
facet.rows
: Logical scalar
. Should the rows in the
plot be spitted into facets? (Default: FALSE
)
facet.cols
: Logical scalar
. Should the columns in the
plot be spitted into facets? (Default: FALSE
)
ncol
: Numeric scalar
. if facets are applied,
ncol
defines many columns should be for plotting the different
facets. (Default: 2
)
scales
Character scalar
. Defines the behavior of the
scales of each facet. The value is passed into
facet_wrap
. (Default: "fixed"
)
See mia-plot-args
for more details i.e. call
help("mia-plot-args")
Character scalar
value defining which assay data to
use. (Default: "relabundance"
)
Deprecate. Use assay.type
instead.
Character scalar
. Either “bar” or “point”.
It is recommended to handle subsetting, agglomeration, and transformation
outside this function. However, agglomeration and relative transformation
can be applied using the group
and as.relative
parameters,
respectively. If one of the TAXONOMY_RANKS
is selected via
group
, mia::agglomerateByRank()
is used, otherwise
agglomerateByVariable()
is applied.
data(GlobalPatterns, package="mia")
tse <- GlobalPatterns
# If rank is set to NULL (default), agglomeration is not done. However, note
# that there is maximum number of rows that can be plotted. That is why
# we take sample from the data.
set.seed(26348)
sample <- sample(rownames(tse), 20)
tse_sub <- tse[sample, ]
# Apply relative transformation
tse_sub <- transformAssay(tse_sub, method = "relabundance")
plotAbundance(tse_sub, assay.type = "relabundance")
#> Warning: Removed 411 rows containing missing values or values outside the scale range
#> (`geom_bar()`).
# Plotting counts using the first taxonomic rank as default
plotAbundance(
tse, assay.type="counts", group = "Phylum") +
labs(y="Counts")
#> Warning: Removed 728 rows containing missing values or values outside the scale range
#> (`geom_bar()`).
# Using "Phylum" as rank. Apply relative transformation to "counts" assay.
plotAbundance(
tse, assay.type="counts", group = "Phylum", add_legend = FALSE,
as.relative = TRUE)
#> Warning: Removed 728 rows containing missing values or values outside the scale range
#> (`geom_bar()`).
# Apply relative transform
tse <- transformAssay(tse, method = "relabundance")
# A feature from colData or taxon from chosen rank can be used for ordering
# samples.
plotAbundance(
tse, assay.type="relabundance", group = "Phylum",
order.col.by = "Bacteroidetes")
#> Warning: Removed 728 rows containing missing values or values outside the scale range
#> (`geom_bar()`).
# col.var from colData can be plotted together with abundance plot.
# Returned object is a list that includes two plot; other visualizes
## abundance other col.var.
plot <- plotAbundance(
tse, assay.type = "relabundance", group = "Phylum",
col.var = "SampleType")
# \donttest{
# These two plots can be combined with wrap_plots function from patchwork
# package
library(patchwork)
wrap_plots(plot, ncol = 1, heights = c(0.95, 0.05))
#> Warning: Removed 728 rows containing missing values or values outside the scale range
#> (`geom_bar()`).
# }
# Same plot as above but showing sample IDs as labels for the x axis on the
# top plot. Moreover, we use facets.
plot <- plotAbundance(
tse, assay.type = "relabundance",
group = "Phylum", col.var = "SampleType", add.legend = FALSE,
add.x.text = TRUE, facet.cols = TRUE, scales = "free_x") +
theme(axis.text.x = element_text(angle = 90))
plot
#> Warning: Removed 728 rows containing missing values or values outside the scale range
#> (`geom_bar()`).
# Compositional barplot with top 5 taxa and samples sorted by
# "Bacteroidetes"
# Getting top taxa on a Phylum level
tse <- transformAssay(tse, method = "relabundance")
tse_phylum <- agglomerateByRank(tse, rank = "Phylum")
top_taxa <- getTop(tse_phylum, top = 5, assay.type = "relabundance")
# Renaming the "Phylum" rank to keep only top taxa and the rest to "Other"
phylum_renamed <- lapply(rowData(tse)$Phylum, function(x){
if (x %in% top_taxa) {x} else {"Other"}})
rowData(tse)$Phylum <- as.character(phylum_renamed)
# Compositional barplot
plotAbundance(
tse, assay.type="relabundance", group = "Phylum",
order.row.by="abund", order.col.by = "Bacteroidetes")