assay
, rowData
or colData
R/AllGenerics.R
, R/plotHistogram.R
plotHistogram.Rd
This methods visualizes abundances or variables from rowData
or
colData
.
plotHistogram(x, ...)
plotBarplot(x, ...)
# S4 method for class 'SummarizedExperiment'
plotHistogram(
x,
assay.type = NULL,
features = NULL,
row.var = NULL,
col.var = NULL,
...
)
# S4 method for class 'SummarizedExperiment'
plotBarplot(
x,
assay.type = NULL,
features = NULL,
row.var = NULL,
col.var = NULL,
...
)
a
SummarizedExperiment
object.
Additional parameters for plotting.
layout
: Character scalar
. Specifies the layout of plot.
Must be either "histogram"
or "density"
.
(Default: "histogram"
)
NULL
or character scalar
. Specifies the
abundace table to plot. (Default: NULL
)
NULL
or character vector
. If assay.type
is specified, this specifies rows to visualize in different facets. If
NULL
, whole data is visualized as a whole. (Default: NULL
)
NULL
or character vector
. Specifies a variable
from rowData(x)
to visualize. (Default: NULL
)
NULL
or character vector
Specifies a variable
from colData(x)
to visualize. (Default: NULL
)
A ggplot2
object.
Histogram and bar plot are a basic visualization techniques in quality
control. It helps to visualize the distribution of data. plotAbundance
allows researcher to visualise the abundance from assay
, or variables
from rowData
or colData
. For visualizing categorical values,
one can utilize plotBarplot
.
plotAbundanceDensity
function is related
to plotHistogram
. However, the former visualizes the most prevalent
features, while the latter can be used more freely to explore the
distributions.
data(GlobalPatterns)
tse <- GlobalPatterns
# Visualize the counts data. There are lots of zeroes.
plotHistogram(tse, assay.type = "counts")
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Apply transformation
tse <- transformAssay(tse, method = "clr", pseudocount = TRUE)
#> A pseudocount of 0.5 was applied.
# And plot specified rows
plotHistogram(tse, assay.type = "clr", features = rownames(tse)[1:10])
#> `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
# Calculate shannon diversity and visualize its distribution with density
# plot
tse <- addAlpha(tse, index = "shannon")
plotHistogram(tse, col.var = "shannon", layout = "density")
# For categorical values, one can utilize a bar plot
plotBarplot(tse, col.var = "SampleType")