plotPrevalence and plotRowPrevalence visualize prevalence
information.
plotRowPrevalence(x, ...)
plotPrevalentAbundance(x, ...)
plotPrevalence(x, ...)
# S4 method for class 'SummarizedExperiment'
plotPrevalence(
x,
detection = detections,
detections = c(0.01, 0.1, 1, 2, 5, 10, 20),
prevalence = prevalences,
prevalences = seq(0.1, 1, 0.1),
assay.type = assay_name,
assay_name = "counts",
rank = NULL,
BPPARAM = BiocParallel::SerialParam(),
...
)
# S4 method for class 'SummarizedExperiment'
plotPrevalentAbundance(
x,
rank = NULL,
assay.type = assay_name,
assay_name = "counts",
colour.by = colour_by,
colour_by = NULL,
size.by = size_by,
size_by = NULL,
shape.by = shape_by,
shape_by = NULL,
show.label = label,
label = NULL,
facet.by = facet_by,
facet_by = NULL,
...
)
# S4 method for class 'SummarizedExperiment'
plotRowPrevalence(
x,
rank = NULL,
assay.type = assay_name,
assay_name = "counts",
detection = detections,
detections = c(0.01, 0.1, 1, 2, 5, 10, 20),
min.prevalence = min_prevalence,
min_prevalence = 0,
BPPARAM = BiocParallel::SerialParam(),
...
)a
SummarizedExperiment
object.
Numeric scalar. Detection thresholds for
absence/presence. Either an absolutes value compared directly to the values
of x or a relative value between 0 and 1, if TRUE.
Deprecated. Use detection instead.
Numeric scalar. Prevalence thresholds (in 0 to 1).
The required prevalence is strictly greater by default. To include the
limit, set include.lowest to TRUE.
Deprecated. Use prevalence instead.
Character scalar. Defines which assay data to
use. (Default: "relabundance")
Deprecated. Use assay.type instead.
additional arguments
as.relative Logical scalar. Should the relative values
be calculated? (Default: FALSE)
ndetection Integer scalar. Determines the number of breaks
calculated detection thresholds when detection=NULL. When
TRUE, as_relative is then also regarded as TRUE.
(Default: 20)
If !is.null(rank) matching arguments are passed on to
agglomerateByRank. See
?agglomerateByRank for more details.
additional arguments for plotting. See
mia-plot-args for more details i.e. call
help("mia-plot-args")
A
BiocParallelParam
object specifying whether the UniFrac calculation should be parallelized.
Character scalar. Specification of a feature to
colour points by, see the by argument in
?retrieveFeatureInfo for
possible values. Only used with layout = "point".
(Default: NULL)
Deprecated. Use colour.by instead.
Character scalar. Specification of a feature to size
points by, see the by argument in
?retrieveFeatureInfo for
possible values. Only used with layout = "point".
(Default: NULL)
Deprecated. Use size.by instead.
Character scalar. Specification of a feature to shape
points by, see the by argument in
?retrieveFeatureInfo for
possible values. Only used with layout = "point".
(Default: NULL)
Deprecated. Use shape.by instead.
Logical scalar, character scalar or
integer vector for selecting labels from the rownames of x.
If rank is not NULL the rownames might change.
(Default: NULL)
Deprecated. Use show.label instead.
Character scalar. Taxonomic rank to facet the plot by.
Value must be of taxonomyRanks(x)
Argument can only be used in function plotPrevalentAbundance.
Deprecated. Use facet.by instead.
Numeric scalar. Applied as a threshold for
plotting. The threshold is applied per row and column.
(Default: 0)
Deprecated. Use min.prevalence instead.
A ggplot2 object or plotly object, if more than one
prevalence was defined.
Whereas plotPrevalence produces a line plot, plotRowPrevalence
returns a heatmap.
Agglomeration on different taxonomic levels is available through the
rank argument.
To exclude certain taxa, preprocess x to your liking, for example
with subsetting via getPrevalent or
agglomerateByPrevalence.
data(GlobalPatterns, package = "mia")
# Apply relative transformation
GlobalPatterns <- transformAssay(GlobalPatterns, method = "relabundance")
# plotting N of prevalence exceeding taxa on the Phylum level
plotPrevalence(GlobalPatterns, rank = "Phylum")
plotPrevalence(GlobalPatterns, rank = "Phylum") + scale_x_log10()
# plotting prevalence per taxa for different detection thresholds as heatmap
plotRowPrevalence(GlobalPatterns, rank = "Phylum")
# by default a continuous scale is used for different detection levels,
# but this can be adjusted
plotRowPrevalence(
GlobalPatterns, rank = "Phylum", assay.type = "relabundance",
detection = c(0, 0.001, 0.01, 0.1, 0.2))
# point layout for plotRowPrevalence can be used to visualize by additional
# information
plotPrevalentAbundance(
GlobalPatterns, rank = "Family", colour.by = "Phylum") +
scale_x_log10()
# When using function plotPrevalentAbundace, it is possible to create facets
# with 'facet.by'.
plotPrevalentAbundance(
GlobalPatterns, rank = "Family",
colour.by = "Phylum", facet.by = "Kingdom") +
scale_x_log10()