plotPrevalence
and plotRowPrevalence
visualize prevalence
information.
plotRowPrevalence(x, ...)
plotPrevalentAbundance(x, ...)
plotPrevalence(x, ...)
# S4 method for class 'SummarizedExperiment'
plotPrevalence(
x,
detection = detections,
detections = c(0.01, 0.1, 1, 2, 5, 10, 20),
prevalence = prevalences,
prevalences = seq(0.1, 1, 0.1),
assay.type = assay_name,
assay_name = "counts",
rank = NULL,
BPPARAM = BiocParallel::SerialParam(),
...
)
# S4 method for class 'SummarizedExperiment'
plotPrevalentAbundance(
x,
rank = NULL,
assay.type = assay_name,
assay_name = "counts",
colour.by = colour_by,
colour_by = NULL,
size.by = size_by,
size_by = NULL,
shape.by = shape_by,
shape_by = NULL,
show.label = label,
label = NULL,
facet.by = facet_by,
facet_by = NULL,
...
)
# S4 method for class 'SummarizedExperiment'
plotRowPrevalence(
x,
rank = NULL,
assay.type = assay_name,
assay_name = "counts",
detection = detections,
detections = c(0.01, 0.1, 1, 2, 5, 10, 20),
min.prevalence = min_prevalence,
min_prevalence = 0,
BPPARAM = BiocParallel::SerialParam(),
...
)
a
SummarizedExperiment
object.
Numeric scalar
. Detection thresholds for
absence/presence. Either an absolutes value compared directly to the values
of x
or a relative value between 0 and 1, if TRUE
.
Deprecated. Use detection
instead.
Numeric scalar
. Prevalence thresholds (in 0 to 1).
The required prevalence is strictly greater by default. To include the
limit, set include.lowest
to TRUE
.
Deprecated. Use prevalence
instead.
Character scalar
. Defines which assay data to
use. (Default: "relabundance"
)
Deprecated. Use assay.type
instead.
additional arguments
as.relative Logical scalar
. Should the relative values
be calculated? (Default: FALSE
)
ndetection Integer scalar
. Determines the number of breaks
calculated detection thresholds when detection=NULL
. When
TRUE
, as_relative
is then also regarded as TRUE
.
(Default: 20
)
If !is.null(rank)
matching arguments are passed on to
agglomerateByRank
. See
?agglomerateByRank
for more details.
additional arguments for plotting. See
mia-plot-args
for more details i.e. call
help("mia-plot-args")
A
BiocParallelParam
object specifying whether the UniFrac calculation should be parallelized.
Character scalar
. Specification of a feature to
colour points by, see the by
argument in
?retrieveFeatureInfo
for
possible values. Only used with layout = "point"
.
(Default: NULL
)
Deprecated. Use colour.by
instead.
Character scalar
. Specification of a feature to size
points by, see the by
argument in
?retrieveFeatureInfo
for
possible values. Only used with layout = "point"
.
(Default: NULL
)
Deprecated. Use size.by
instead.
Character scalar
. Specification of a feature to shape
points by, see the by
argument in
?retrieveFeatureInfo
for
possible values. Only used with layout = "point"
.
(Default: NULL
)
Deprecated. Use shape.by
instead.
Logical scalar
, character scalar
or
integer vector
for selecting labels from the rownames of x
.
If rank
is not NULL
the rownames might change.
(Default: NULL
)
Deprecated. Use show.label
instead.
Character scalar
. Taxonomic rank to facet the plot by.
Value must be of taxonomyRanks(x)
Argument can only be used in function plotPrevalentAbundance.
Deprecated. Use facet.by
instead.
Numeric scalar
. Applied as a threshold for
plotting. The threshold is applied per row and column.
(Default: 0
)
Deprecated. Use min.prevalence
instead.
A ggplot2
object or plotly
object, if more than one
prevalence
was defined.
Whereas plotPrevalence
produces a line plot, plotRowPrevalence
returns a heatmap.
Agglomeration on different taxonomic levels is available through the
rank
argument.
To exclude certain taxa, preprocess x
to your liking, for example
with subsetting via getPrevalent
or
agglomerateByPrevalence
.
data(GlobalPatterns, package = "mia")
# Apply relative transformation
GlobalPatterns <- transformAssay(GlobalPatterns, method = "relabundance")
# plotting N of prevalence exceeding taxa on the Phylum level
plotPrevalence(GlobalPatterns, rank = "Phylum")
plotPrevalence(GlobalPatterns, rank = "Phylum") + scale_x_log10()
# plotting prevalence per taxa for different detection thresholds as heatmap
plotRowPrevalence(GlobalPatterns, rank = "Phylum")
# by default a continuous scale is used for different detection levels,
# but this can be adjusted
plotRowPrevalence(
GlobalPatterns, rank = "Phylum", assay.type = "relabundance",
detection = c(0, 0.001, 0.01, 0.1, 0.2))
# point layout for plotRowPrevalence can be used to visualize by additional
# information
plotPrevalentAbundance(
GlobalPatterns, rank = "Family", colour.by = "Phylum") +
scale_x_log10()
# When using function plotPrevalentAbundace, it is possible to create facets
# with 'facet.by'.
plotPrevalentAbundance(
GlobalPatterns, rank = "Family",
colour.by = "Phylum", facet.by = "Kingdom") +
scale_x_log10()