plotScree.Rd
plotScree
creates a scree plot or eigenvalues plot starting from a
TreeSummarizedExperiment object or a vector of eigenvalues. This visualization
shows how the eigenvalues decrease across components.
plotScree(x, ...)
# S4 method for class 'SingleCellExperiment'
plotScree(x, dimred, cumulative = FALSE, ...)
# S4 method for class 'vector'
plotScree(x, cumulative = FALSE, ...)
a
TreeSummarizedExperiment
or a vector of eigenvalues.
additional parameters for plotting
show.barplot
Logical scalar. Whether to show a barplot.
(Default: TRUE
).
show.points
Logical scalar. Whether to show points.
(Default: TRUE
).
show.line
Logical scalar. Whether to show a line connecting
points. (Default: TRUE
).
show.labels
Logical scalar. Whether to show labels for each
point. (Default: FALSE
).
Character scalar
or integer scalar
. Determines
the reduced dimension to plot. This is used when x is a TreeSummarizedExperiment
to extract the eigenvalues from reducedDim(x, dimred)
.
Logical scalar
. Whether to show cumulative explained
variance. (Default: FALSE
).
A ggplot2
object
plotScree
creates a scree plot or eigenvalues plot, which is useful
for visualizing the relative importance of components in dimensionality
reduction techniques like PCA, RDA, or CCA. When the input is a
TreeSummarizedExperiment, the function extracts eigenvalues from the specified
reduced dimension slot. When the input is a vector, it directly uses these
values as eigenvalues.
The plot can include a combination of barplot, points, connecting lines,
and labels, which can be controlled using the show.*
parameters.
An option to show cumulative explained variance is also available by setting
cumulative = TRUE
.
# Load necessary libraries
library(ggplot2)
# Load dataset
library(miaViz)
data("enterotype", package = "mia")
tse <- enterotype
# Run RDA and store results into TreeSE
tse <- addRDA(
tse,
formula = assay ~ ClinicalStatus + Gender + Age,
FUN = getDissimilarity,
distance = "bray",
na.action = na.exclude
)
# Plot scree plot
plotScree(tse, "RDA")