Orchestrating Microbiome Analysis with Bioconductor

Tuomas Borman

Orchestrating Microbiome Analysis with Bioconductor

Bioconductor sticker mia logo

Data containers

  • Data containers form the core of software
  • Modular, efficient workflows

SummarizedExperiment

(Huber et al. 2015)

Microbiome data science

  • Sequencing data - Other omics regularly incorporated
  • Previously based on phyloseq

Optimal container for microbiome data?

Optimal container for microbiome data?

  • Multiple assays: taxonomic and functional profiles

Optimal container for microbiome data?

  • Multiple assays: taxonomic and functional profiles
  • Hierarchical data: phylogenetic tree

Optimal container for microbiome data?

  • Multiple assays: taxonomic and functional profiles
  • Hierarchical data: phylogenetic tree
  • Side information: sample and feature metadata

Optimal container for microbiome data?

  • Multiple assays: taxonomic and functional profiles
  • Hierarchical data: phylogenetic tree
  • Side information: sample and feature metadata
  • Optimized: for speed and memory

Optimal container for microbiome data?

  • Multiple assays: taxonomic and functional profiles
  • Hierarchical data: phylogenetic tree
  • Side information: sample and feature metadata
  • Optimized: for speed and memory
  • Interoperable: with other applications and frameworks

Optimal container for microbiome data?

  • Multiple assays: taxonomic and functional profiles
  • Hierarchical data: phylogenetic tree
  • Side information: sample and feature metadata
  • Optimized: for speed and memory
  • Interoperable: with other applications and frameworks

Reduce overlapping efforts, improve interoperability, ensure sustainability.

TreeSummarizedExperiment

(Huang et al. 2021)

TreeSummarizedExperiment class

Microbiome Analysis (mia)

  • Microbiome data science in SummarizedExperiment ecosystem
  • Distributed through several R packages
  • mia package top 8.1% Bioconductor downloads
mia logo.

Community-driven ecosystem of tools

mia logo. MGnifyR logo. HoloFoodR logo. iSEE logo. MAE logo. SE logo. SCE logo. scater logo. benchdamic logo. netcomi logo. radEmu logo. DESeq2 logo. Biobakery logo.

Community-driven ecosystem of tools

Interoperable with the SummarizedExperiment ecosystem

mia logo. MGnifyR logo. HoloFoodR logo. iSEE logo. MAE logo. SE logo. SCE logo. scater logo. benchdamic logo. netcomi logo. radEmu logo. DESeq2 logo. Biobakery logo.

Online book

  • Resources and tutorials for microbiome analysis
  • Community-built best practices
  • Open to contributions!

Acknowledgements

  • Giulio Benedetti
  • Muluh Geraldson
  • Aura Raulo
  • Akewak Jeba
  • Felix M. Ernst
  • Sudarshan Shetty
  • Christian L. Müller
  • Aki Havulinna
  • Levi Waldron
  • Thomaz Bastiaanssen
  • Leo Lahti
  • and others

University of Turku logo

UTU logo

Research Council of Finland logo

CompLifeSci logo

Turun yliopistosäätiö logo

Thank you for your time!

Moreno-Indias et al. (2021) Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions. Frontiers in Microbiology.

References

Huang, Ruizhu, Charlotte Soneson, Felix G. M. Ernst, et al. 2021. “TreeSummarizedExperiment: A S4 Class for Data with Hierarchical Structure.” F1000Research 9: 1246. https://doi.org/10.12688/f1000research.26669.2.
Huber, W., V. J. Carey, R. Gentleman, S. Anders, M. Carlson, B. S. Carvalho, H. C. Bravo, et al. 2015. Orchestrating High-Throughput Genomic Analysis with Bioconductor.” Nature Methods 12 (2): 115–21. http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3252.html.
Moreno-Indias, Isabel, Leo Lahti, Miroslava Nedyalkova, Ilze Elbere, Gennady V. Roshchupkin, Muhamed Adilovic, Onder Aydemir, et al. 2021. “Statistical and Machine Learning Techniques in Human Microbiome Studies: Contemporary Challenges and Solutions.” Frontiers in Microbiology 12: 277. https://doi.org/10.3389/fmicb.2021.635781.