Fit a (penalized) Cox proportional hazards model on microbiome data contained in a SummarizedExperiment object. Data transformations (e.g. pairwise log-ratios) should be handled upstream (e.g. with mia::transformAssay). This function focuses on the statistical model.
getSurvival(x, ...)
addSurvival(x, ...)
# S4 method for class 'SummarizedExperiment'
addSurvival(x, time.col, status.col, name = "survival", ...)
# S4 method for class 'SummarizedExperiment'
getSurvival(
x,
time.col,
status.col,
assay.type = "counts",
col.var = NULL,
...
)A
SummarizedExperiment
object.
additional arguments.
penalized: Logical. If TRUE, fit penalized Cox
regression using glmnet. If FALSE, fit standard Cox model using
survival::coxph. (Default: TRUE)
lambda: Character or numeric. Penalization parameter
passed to cv.glmnet. Use "lambda.1se",
"lambda.min", or a numeric value. (Default: "lambda.1se")
alpha: Numeric scalar. Elastic net mixing parameter:
1 = Lasso, 0 = Ridge. (Default: 0.9)
nfolds: Integer scalar. Number of cross-validation
folds for cv.glmnet. (Default: 10)
nvar: Integer scalar. Optional. Maximum number of
variables (log-ratios) to include in the model. (Default: NULL)
coef.threshold: Numeric scalar. Minimum absolute value
for a coefficient to be included in the final model. (Default: 0)
Character scalar. Column name in colData(x)
representing time to event or follow-up time. Must be numeric.
Character scalar. Column name in colData(x)
representing event occurrence. Accepts numeric (0/1) or logical (FALSE/TRUE)
values.
Character vector. Specifies a column name for storing
divergence results.
(Default: c("divergence", "time_diff", "ref_samples"))
Character scalar. Specifies which assay values are
used in the dissimilarity estimation. (Default: "counts")
Character vector. Optional. Specifies covariate
columns in colData(x) to adjust for in the survival model.
(Default: NULL)
A list with model summaries:
coefficients: estimated model coefficients
selected.features: nonzero features in penalized model
risk_scores: predicted risk scores
cindex.apparent: apparent concordance index
cv.cindex.mean: mean cross-validated C-index (if penalized)
cv.cindex.sd: SD of cross-validated C-index (if penalized)
fit: fitted model object (coxph or cv.glmnet)
Meritxell Pujolassos , Antoni Susín , M.Luz Calle (2024). Microbiome compositional data analysis for survival studies NAR Genomics and Bioinformatics, 6(2), lqae038. doi:10.1093/nargab/lqae038
coda_coxnet,
cv.glmnet
# data(SurvivalData)
# tse <- SurvivalData
# getSurvival(tse, time.col = "T1Dweek", status.col = "T1D",
# col.var = c("Sex", "Antibiotics"))