Fit a (penalized) Cox proportional hazards model on microbiome data contained in a SummarizedExperiment object. Data transformations (e.g. pairwise log-ratios) should be handled upstream (e.g. with mia::transformAssay). This function focuses on the statistical model.
getSurvival(x, ...)
addSurvival(x, ...)
# S4 method for class 'SummarizedExperiment'
addSurvival(x, time.col, status.col, name = "survival", ...)
# S4 method for class 'SummarizedExperiment'
getSurvival(
x,
time.col,
status.col,
assay.type = "counts",
col.var = NULL,
...
)
A
SummarizedExperiment
object.
additional arguments.
penalized
: Logical
. If TRUE, fit penalized Cox
regression using glmnet
. If FALSE, fit standard Cox model using
survival::coxph
. (Default: TRUE
)
lambda
: Character or numeric
. Penalization parameter
passed to cv.glmnet
. Use "lambda.1se"
,
"lambda.min"
, or a numeric value. (Default: "lambda.1se"
)
alpha
: Numeric scalar
. Elastic net mixing parameter:
1 = Lasso, 0 = Ridge. (Default: 0.9
)
nfolds
: Integer scalar
. Number of cross-validation
folds for cv.glmnet
. (Default: 10
)
nvar
: Integer scalar
. Optional. Maximum number of
variables (log-ratios) to include in the model. (Default: NULL
)
coef.threshold
: Numeric scalar
. Minimum absolute value
for a coefficient to be included in the final model. (Default: 0
)
Character scalar
. Column name in colData(x)
representing time to event or follow-up time. Must be numeric.
Character scalar
. Column name in colData(x)
representing event occurrence. Accepts numeric (0/1) or logical (FALSE/TRUE)
values.
Character vector
. Specifies a column name for storing
divergence results.
(Default: c("divergence", "time_diff", "ref_samples")
)
Character scalar
. Specifies which assay values are
used in the dissimilarity estimation. (Default: "counts"
)
Character vector
. Optional. Specifies covariate
columns in colData(x)
to adjust for in the survival model.
(Default: NULL
)
A list with model summaries:
coefficients
: estimated model coefficients
selected.features
: nonzero features in penalized model
risk_scores
: predicted risk scores
cindex.apparent
: apparent concordance index
cv.cindex.mean
: mean cross-validated C-index (if penalized)
cv.cindex.sd
: SD of cross-validated C-index (if penalized)
fit
: fitted model object (coxph or cv.glmnet)
Meritxell Pujolassos , Antoni Susín , M.Luz Calle (2024). Microbiome compositional data analysis for survival studies NAR Genomics and Bioinformatics, 6(2), lqae038. doi:10.1093/nargab/lqae038
coda_coxnet
,
cv.glmnet
# data(SurvivalData)
# tse <- SurvivalData
# getSurvival(tse, time.col = "T1Dweek", status.col = "T1D",
# col.var = c("Sex", "Antibiotics"))