Survival modeling wrapper for TreeSummarizedExperiment using coda_coxnet
getSurvival(x, ...)
# S4 method for class 'SummarizedExperiment'
getSurvival(
x,
time.col,
status.col,
assay.type = "counts",
covar.cols = NULL,
lambda = "lambda.1se",
nvar = NULL,
alpha = 0.9,
nfolds = 10,
showPlots = TRUE,
coef_threshold = 0,
...
)
A
SummarizedExperiment
object.
Optional arguments passed into
mia::addDivergence()
.
Character scalar
. Column name in colData(x)
representing time to event or follow-up time. Must be numeric.
Character scalar
. Column name in colData(x)
representing event occurrence. Accepts numeric (0/1) or logical (FALSE/TRUE)
values.
Character scalar
. Specifies which assay values are
used in the dissimilarity estimation. (Default: "counts"
)
Character vector
. Optional. Specifies covariate
columns in colData(x)
to adjust for in the survival model.
(Default: NULL
)
Character or numeric
. Penalization parameter passed to
cv.glmnet
. Use "lambda.1se"
,
"lambda.min"
, or a numeric value. (Default: "lambda.1se"
)
Integer scalar
. Optional. Maximum number of variables
(log-ratios) to include in the model. (Default: NULL
)
Numeric scalar
. Elastic net mixing parameter: 1 = Lasso,
0 = Ridge. (Default: 0.9
)
Integer scalar
. Number of cross-validation folds for
cv.glmnet
. (Default: 10
)
Logical
. If TRUE
, generates plots for
cross-validation, risk scores, and selected signature. (Default: TRUE
)
Numeric scalar
. Minimum absolute value for a
coefficient to be included in the final model. (Default: 0
)
A named list
containing:
taxa.num
: indices of selected taxa
taxa.name
: names of selected taxa
log-contrast coefficients
: coefficients of selected taxa in
the final log-contrast model
risk.score
: predicted risk scores
apparent Cindex
: concordance index on training data
mean cv-Cindex
: mean cross-validated concordance index
sd cv-Cindex
: standard deviation of cross-validated
concordance index
risk score plot
: ggplot object showing risk score vs survival
signature plot
: ggplot object of selected taxa and coefficients
This function extracts compositional count data and survival metadata from a
TreeSummarizedExperiment
object and applies penalized Cox regression via coda_coxnet
,
using pairwise log-ratio transformations.
Meritxell Pujolassos , Antoni Susín , M.Luz Calle (2024). Microbiome compositional data analysis for survival studies NAR Genomics and Bioinformatics, 6(2), lqae038. doi:10.1093/nargab/lqae038
# data(SurvivalData)
# tse <- SurvivalData
# getSurvival(tse, time.col = "T1Dweek", status.col = "T1D",
# covar.cols = c("Sex", "Antibiotics"))