Appendix A — Extra material

knitr::opts_chunk$set(eval=TRUE)

A.1 Slides

Outreach material includes slide sets for training events.

A.2 PERMANOVA comparison

Here we present two possible uses of the adonis2 function which performs PERMANOVA. The optional argument by has an effect on the statistical outcome, so its two options are compared here.

# import necessary packages
library(gtools)
library(purrr)
library(vegan)
library(gtools)
library(purrr)

Let us load the enterotype TSE object and run PERMANOVA for different orders of three variables with two different approaches: by = "margin" or by = "terms".

# load and prepare data
library(mia)
data("enterotype", package="mia")
enterotype <- transformAssay(enterotype, method = "relabundance")
# drop samples missing meta data
enterotype <- enterotype[ , !rowSums(is.na(colData(enterotype)[, c("Nationality", "Gender", "ClinicalStatus")]) > 0)]
# define variables and list all possible combinations
vars <- c("Nationality", "Gender", "ClinicalStatus")
var_perm <- permutations(n = 3, r = 3, vars)
formulas <- apply(var_perm, 1, function(row) purrr::reduce(row, function(x, y) paste(x, "+", y)))
# create empty data.frames for further storing p-values
terms_df <- data.frame("Formula" = formulas,
                       "ClinicalStatus" = rep(0, 6),
                       "Gender" = rep(0, 6),
                       "Nationality" = rep(0, 6))
margin_df <- data.frame("Formula" = formulas,
                        "ClinicalStatus" = rep(0, 6),
                        "Gender" = rep(0, 6),
                        "Nationality" = rep(0, 6))
for (row_idx in 1:nrow(var_perm)) {
  
  # generate temporary formula (i.e. "assay ~ ClinicalStatus + Nationality + Gender")
  tmp_formula <- purrr::reduce(var_perm[row_idx, ], function(x, y) paste(x, "+", y))
  tmp_formula <- as.formula(paste0('t(assay(enterotype, "relabundance")) ~ ',
                            tmp_formula))

  # multiple variables, default: by = "terms"
  set.seed(75)
  with_terms <- adonis2(tmp_formula, 
                by = "terms",
                data = colData(enterotype),
                permutations = 99)
  
  # multiple variables, by = "margin"
  set.seed(75)
  with_margin <- adonis2(tmp_formula, 
                 by = "margin",
                 data = colData(enterotype),
                 permutations = 99)

  # extract p-values
  terms_p <- with_terms[["Pr(>F)"]]
  terms_p <- terms_p[!is.na(terms_p)]
  margin_p <- with_margin[["Pr(>F)"]]
  margin_p <- margin_p[!is.na(margin_p)]
  
  # store p-values into data.frames
  for (col_idx in 1:ncol(var_perm)) {
    
    terms_df[var_perm[row_idx, col_idx]][row_idx, ] <- terms_p[col_idx]
    margin_df[var_perm[row_idx, col_idx]][row_idx, ] <- margin_p[col_idx]
    
  }
  
}

The following table displays the p-values for the three variables ClinicalStatus, Gender and Nationality obtained by PERMANOVA with adonis2. Note that the p-values remain identical when by = "margin", but change with the order of the variables in the formula when by = "terms" (default).


df <- terms_df %>%
  dplyr::inner_join(margin_df, by = "Formula", suffix = c(" (terms)", " (margin)"))

knitr::kable(df)
Formula ClinicalStatus (terms) Gender (terms) Nationality (terms) ClinicalStatus (margin) Gender (margin) Nationality (margin)
ClinicalStatus + Gender + Nationality 0.20 0.70 0.04 0.53 0.29 0.04
ClinicalStatus + Nationality + Gender 0.20 0.29 0.05 0.53 0.29 0.04
Gender + ClinicalStatus + Nationality 0.17 0.79 0.04 0.53 0.29 0.04
Gender + Nationality + ClinicalStatus 0.53 0.79 0.03 0.53 0.29 0.04
Nationality + ClinicalStatus + Gender 0.61 0.29 0.04 0.53 0.29 0.04
Nationality + Gender + ClinicalStatus 0.53 0.39 0.04 0.53 0.29 0.04

A.3 Bayesian Multinomial Logistic-Normal Models

Analysis using such model could be performed with the function pibble from the fido package, wihch is in form of a Multinomial Logistic-Normal Linear Regression model; see vignette of package.

The following presents such an exemplary analysis based on the data of Sprockett et al. (2020) available through microbiomeDataSets package.

Sprockett, Daniel D., Melanie Martin, Elizabeth K. Costello, Adam R. Burns, Susan P. Holmes, Michael D. Gurven, and David A. Relman. 2020. “Microbiota Assembly, Structure, and Dynamics Among Tsimane Horticulturalists of the Bolivian Amazon.” Nat Commun 11 (1): 3772. https://doi.org/10.1038/s41467-020-17541-6.

Loading the libraries and importing data:

library(microbiomeDataSets)
tse <- SprockettTHData()

We pick three covariates (“Sex”,“Age_Years”,“Delivery_Mode”) during this analysis as an example, and beforehand we check for missing data:

library(mia)
cov_names <- c("Sex","Age_Years","Delivery_Mode")
na_counts <- apply(is.na(colData(tse)[,cov_names]), 2, sum)
na_summary<-as.data.frame(na_counts,row.names=cov_names)

We drop missing values of the covariates:

tse <- tse[ , !is.na(colData(tse)$Delivery_Mode) ]
tse <- tse[ , !is.na(colData(tse)$Age_Years) ]

We agglomerate microbiome data to Phylum:

tse_phylum <- mergeFeaturesByRank(tse, "Phylum")

We extract the counts assay and covariate data to build the model matrix:

Y <- assays(tse_phylum)$counts
# design matrix
# taking 3 covariates
sample_data<-as.data.frame(colData(tse_phylum)[,cov_names])
X <- t(model.matrix(~Sex+Age_Years+Delivery_Mode,data=sample_data))

Building the parameters for the pibble call to build the model; see more at vignette:

n_taxa<-nrow(Y)
upsilon <- n_taxa+3
Omega <- diag(n_taxa)
G <- cbind(diag(n_taxa-1), -1)
Xi <- (upsilon-n_taxa)*G%*%Omega%*%t(G)
Theta <- matrix(0, n_taxa-1, nrow(X))
Gamma <- diag(nrow(X))

Automatically initializing the priors and visualizing their distributions:

priors <- pibble(NULL, X, upsilon, Theta, Gamma, Xi)
names_covariates(priors) <- rownames(X)
plot(priors, pars="Lambda") + ggplot2::xlim(c(-5, 5))

Estimating the posterior by including our response data Y. Note: Some computational failures could occur (see discussion) the arguments multDirichletBoot calcGradHess could be passed in such case.

priors$Y <- Y 
posterior <- refit(priors, optim_method="adam", multDirichletBoot=0.5) #calcGradHess=FALSE

Printing a summary about the posterior:

ppc_summary(posterior)
##  Proportions of Observations within 95% Credible Interval: 0.9977226

Plotting the summary of the posterior distributions of the regression parameters:

names_categories(posterior) <- rownames(Y)
plot(posterior,par="Lambda",focus.cov=rownames(X)[2:4])

Taking a closer look at “Sex” and “Delivery_Mode”:

plot(posterior, par="Lambda", focus.cov = rownames(X)[c(2,4)])

A.4 Interactive 3D Plots

# Load libraries
library(rgl)
library(plotly)
library(knitr)
knitr::knit_hooks$set(webgl = hook_webgl)

In this section we make a 3D version of the earlier Visualizing the most dominant genus on PCoA (see @ref(quality-control)), with the help of the plotly (Sievert 2020).

Sievert, Carson. 2020. Interactive Web-Based Data Visualization with r, Plotly, and Shiny. Chapman; Hall/CRC. https://plotly-r.com.
# Importing necessary libraries
library(curatedMetagenomicData)
library(dplyr)
library(DT)
library(mia)
library(scater)

# Querying the data
tse <- sampleMetadata %>%
    filter(age >= 18) %>% # taking only data of age 18 or above
    filter(!is.na(alcohol)) %>% # excluding missing values
    returnSamples("relative_abundance")

tse_Genus <- mergeFeaturesByRank(tse, rank="genus")
tse_Genus <- addPerSampleDominantFeatures(tse_Genus,assay.type="relative_abundance", name = "dominant_taxa")

# Performing PCoA with Bray-Curtis dissimilarity.
tse_Genus <- runMDS(tse_Genus, FUN = vegan::vegdist, ncomponents = 3,
              name = "PCoA_BC", assay.type = "relative_abundance")

# Getting the 6 top taxa
top_taxa <- getTopFeatures(tse_Genus,top = 6, assay.type = "relative_abundance")

# Naming all the rest of non top-taxa as "Other"
most_abundant <- lapply(colData(tse_Genus)$dominant_taxa,
                   function(x){if (x %in% top_taxa) {x} else {"Other"}})

# Storing the previous results as a new column within colData
colData(tse_Genus)$most_abundant <- as.character(most_abundant)

# Calculating percentage of the most abundant
most_abundant_freq <- table(as.character(most_abundant))
most_abundant_percent <- round(most_abundant_freq/sum(most_abundant_freq)*100, 1)

# Retrieving the explained variance
e <- attr(reducedDim(tse_Genus, "PCoA_BC"), "eig");
var_explained <- e/sum(e[e>0])*100

A.5 phyloseq vs TreeSE cheatsheet

This section has a cheatsheet for translating common functions in phyloseq to TreeSE/mia with example code.

# Download libraries
library(phyloseq)
##  
##  Attaching package: 'phyloseq'
##  The following object is masked from 'package:fido':
##  
##      nsamples
##  The following object is masked from 'package:SummarizedExperiment':
##  
##      distance
##  The following object is masked from 'package:Biobase':
##  
##      sampleNames
##  The following object is masked from 'package:GenomicRanges':
##  
##      distance
##  The following object is masked from 'package:IRanges':
##  
##      distance
library(dplyr)
##  
##  Attaching package: 'dplyr'
##  The following objects are masked from 'package:mia':
##  
##      full_join, inner_join, left_join, right_join
##  The following objects are masked from 'package:Biostrings':
##  
##      collapse, intersect, setdiff, setequal, union
##  The following object is masked from 'package:XVector':
##  
##      slice
##  The following object is masked from 'package:Biobase':
##  
##      combine
##  The following objects are masked from 'package:GenomicRanges':
##  
##      intersect, setdiff, union
##  The following object is masked from 'package:GenomeInfoDb':
##  
##      intersect
##  The following objects are masked from 'package:IRanges':
##  
##      collapse, desc, intersect, setdiff, slice, union
##  The following objects are masked from 'package:S4Vectors':
##  
##      first, intersect, rename, setdiff, setequal, union
##  The following objects are masked from 'package:BiocGenerics':
##  
##      combine, intersect, setdiff, union
##  The following object is masked from 'package:matrixStats':
##  
##      count
##  The following objects are masked from 'package:stats':
##  
##      filter, lag
##  The following objects are masked from 'package:base':
##  
##      intersect, setdiff, setequal, union
library(ggplot2)

Start by loading data as a phyloseq object phy and as TreeSE object tse.

# Loading example data
# Using GlobalPatterns dataset

data(package = "phyloseq", "GlobalPatterns") # phyloseq object
phy <- GlobalPatterns # Rename
phy # Check the phyloseq object
##  phyloseq-class experiment-level object
##  otu_table()   OTU Table:         [ 19216 taxa and 26 samples ]
##  sample_data() Sample Data:       [ 26 samples by 7 sample variables ]
##  tax_table()   Taxonomy Table:    [ 19216 taxa by 7 taxonomic ranks ]
##  phy_tree()    Phylogenetic Tree: [ 19216 tips and 19215 internal nodes ]

data(package = "mia", "GlobalPatterns") # TreeSE object
tse <- GlobalPatterns # Rename
tse # Check the tse object
##  class: TreeSummarizedExperiment 
##  dim: 19216 26 
##  metadata(0):
##  assays(1): counts
##  rownames(19216): 549322 522457 ... 200359 271582
##  rowData names(7): Kingdom Phylum ... Genus Species
##  colnames(26): CL3 CC1 ... Even2 Even3
##  colData names(7): X.SampleID Primer ... SampleType Description
##  reducedDimNames(0):
##  mainExpName: NULL
##  altExpNames(0):
##  rowLinks: a LinkDataFrame (19216 rows)
##  rowTree: 1 phylo tree(s) (19216 leaves)
##  colLinks: NULL
##  colTree: NULL

A.5.1 Accessing different types of data in phyloseq versus TreeSE

Often microbiome datasets contain three different types of tables, one which defines the microbes’ taxonomy from domain to species level, one that describes sample level information like whether the sample is from a healthy or a diseased person, and one that has the abundances of taxa from mapping, like an OTU table.

There are slightly different names for these tables in phyloseq and tse, but they can be retrieved from the phyloseq and tse containers in analogous ways.

Accessing the table of taxonomic names: tax_table = rowData

phyloseq and TreeSE objects’ taxonomy tables can be accessed with tax_table and rowData commands.

phy_taxtable <-
  tax_table(phy)  %>% # Access the phyloseq taxonomic name table
  data.frame # Make into a data frame

tse_taxtable <- rowData(tse) %>% # Same for tse
  data.frame

Accessing sample data: sample_data = colData

Sample data can be accessed with sample_data and colData commands.

phy_sampledata <-
  sample_data(phy) %>% data.frame

tse_sampledata <-
  colData(tse) %>% data.frame

Accessing operational taxonomic unit (OTU) abundance objects: otu_table = assay

OTU tables can be accessed with otu_table and assay commands. The assay can also hold other types of information like taxa abundances from shotgun metagenomic annotation, or functional gene abundances.

phy_otutable <-
  otu_table(phy) %>% data.frame

tse_otutable <-
  assay(tse) %>% data.frame

A.5.2 Building phyloseq objects vs TreeSE objects: phyloseq = TreeSummarizedExperiment

After learning how to access various data types from TreeSE, let’s see how creating TreeSE objects compares to creating phyloseq objects. We will use the vanilla dataframes we created from the phyloseq object to demonstrate making both types of data objects. These are identical to the equivalent tse dataframes but for demonstration we will use ones created from phy.

Let’s start by checking what we have.

phy_otutable %>% head
##         CL3 CC1 SV1 M31Fcsw M11Fcsw M31Plmr M11Plmr F21Plmr M31Tong M11Tong
##  549322   0   0   0       0       0       0       0       0       0       0
##  522457   0   0   0       0       0       0       0       0       0       0
##  951      0   0   0       0       0       0       1       0       0       0
##  244423   0   0   0       0       0       0       0       0       0       0
##  586076   0   0   0       0       0       0       0       0       0       0
##  246140   0   0   0       0       0       0       0       0       0       0
##         LMEpi24M SLEpi20M AQC1cm AQC4cm AQC7cm NP2 NP3 NP5 TRRsed1 TRRsed2
##  549322        0        1     27    100    130   1   0   0       0       0
##  522457        0        0      0      2      6   0   0   0       0       0
##  951           0        0      0      0      0   0   0   0       0       0
##  244423        0        0      0     22     29   0   0   0       0       0
##  586076        0        0      0      2      1   0   0   0       0       0
##  246140        0        0      0      1      3   0   0   0       0       0
##         TRRsed3 TS28 TS29 Even1 Even2 Even3
##  549322       0    0    0     0     0     0
##  522457       0    0    0     0     0     0
##  951          0    0    0     0     0     0
##  244423       0    0    0     0     0     0
##  586076       0    0    0     0     0     0
##  246140       0    0    0     0     0     0
phy_sampledata %>% head
##          X.SampleID  Primer Final_Barcode Barcode_truncated_plus_T
##  CL3            CL3 ILBC_01        AACGCA                   TGCGTT
##  CC1            CC1 ILBC_02        AACTCG                   CGAGTT
##  SV1            SV1 ILBC_03        AACTGT                   ACAGTT
##  M31Fcsw    M31Fcsw ILBC_04        AAGAGA                   TCTCTT
##  M11Fcsw    M11Fcsw ILBC_05        AAGCTG                   CAGCTT
##  M31Plmr    M31Plmr ILBC_07        AATCGT                   ACGATT
##          Barcode_full_length SampleType
##  CL3             CTAGCGTGCGT       Soil
##  CC1             CATCGACGAGT       Soil
##  SV1             GTACGCACAGT       Soil
##  M31Fcsw         TCGACATCTCT      Feces
##  M11Fcsw         CGACTGCAGCT      Feces
##  M31Plmr         CGAGTCACGAT       Skin
##                                         Description
##  CL3       Calhoun South Carolina Pine soil, pH 4.9
##  CC1       Cedar Creek Minnesota, grassland, pH 6.1
##  SV1     Sevilleta new Mexico, desert scrub, pH 8.3
##  M31Fcsw    M3, Day 1, fecal swab, whole body study
##  M11Fcsw   M1, Day 1, fecal swab, whole body study 
##  M31Plmr    M3, Day 1, right palm, whole body study
phy_taxtable %>% head
##         Kingdom        Phylum        Class        Order        Family
##  549322 Archaea Crenarchaeota Thermoprotei         <NA>          <NA>
##  522457 Archaea Crenarchaeota Thermoprotei         <NA>          <NA>
##  951    Archaea Crenarchaeota Thermoprotei Sulfolobales Sulfolobaceae
##  244423 Archaea Crenarchaeota        Sd-NA         <NA>          <NA>
##  586076 Archaea Crenarchaeota        Sd-NA         <NA>          <NA>
##  246140 Archaea Crenarchaeota        Sd-NA         <NA>          <NA>
##              Genus                  Species
##  549322       <NA>                     <NA>
##  522457       <NA>                     <NA>
##  951    Sulfolobus Sulfolobusacidocaldarius
##  244423       <NA>                     <NA>
##  586076       <NA>                     <NA>
##  246140       <NA>                     <NA>

Ok, these are all normal data frames which could come from upstream bioinformatics, like OTU tables that come from 16S analysis, and taxonomy tables.

Let’s demo how to create the treeSE object, how it compares to creating phyloseq and how assay in treeSE compares to otu_table in phyloseq.


# Create phyloseq object
OTU_phy <- otu_table(phy_otutable %>% as.matrix, taxa_are_rows = TRUE) # Make OTU table
TAX_phy <- tax_table(phy_taxtable %>% as.matrix) # Make TAX table
SAMPLE_phy <- sample_data(phy_sampledata) # Make sample data table

phy <- phyloseq(OTU_phy, TAX_phy, SAMPLE_phy) # Combine into phyloseq object
phy # Inspect
##  phyloseq-class experiment-level object
##  otu_table()   OTU Table:         [ 19216 taxa and 26 samples ]
##  sample_data() Sample Data:       [ 26 samples by 7 sample variables ]
##  tax_table()   Taxonomy Table:    [ 19216 taxa by 7 taxonomic ranks ]

Let’s start by checking our otu table, and see if it is counts or already normalized. We will use the same data frame extracted from the phy object as before.

# Check if we have counts or normalized data

phy_otutable %>% head
##         CL3 CC1 SV1 M31Fcsw M11Fcsw M31Plmr M11Plmr F21Plmr M31Tong M11Tong
##  549322   0   0   0       0       0       0       0       0       0       0
##  522457   0   0   0       0       0       0       0       0       0       0
##  951      0   0   0       0       0       0       1       0       0       0
##  244423   0   0   0       0       0       0       0       0       0       0
##  586076   0   0   0       0       0       0       0       0       0       0
##  246140   0   0   0       0       0       0       0       0       0       0
##         LMEpi24M SLEpi20M AQC1cm AQC4cm AQC7cm NP2 NP3 NP5 TRRsed1 TRRsed2
##  549322        0        1     27    100    130   1   0   0       0       0
##  522457        0        0      0      2      6   0   0   0       0       0
##  951           0        0      0      0      0   0   0   0       0       0
##  244423        0        0      0     22     29   0   0   0       0       0
##  586076        0        0      0      2      1   0   0   0       0       0
##  246140        0        0      0      1      3   0   0   0       0       0
##         TRRsed3 TS28 TS29 Even1 Even2 Even3
##  549322       0    0    0     0     0     0
##  522457       0    0    0     0     0     0
##  951          0    0    0     0     0     0
##  244423       0    0    0     0     0     0
##  586076       0    0    0     0     0     0
##  246140       0    0    0     0     0     0

We have counts!

Since TreeSEs can hold many different versions of the OTU table, most commonly either relative abundances or counts, we will need to give our assay (which corresponds to otu_table in Phyloseq) a name and list the different types of assays or transformations we have. In this example we only have one item ‘counts’ in the list.

Let’s convert the data frame to a matrix and make the list of assays.

# Create TreeSE
counts <- as.matrix(phy_otutable) # Convert to a matrix
assays <- SimpleList(counts = counts)
tse <- TreeSummarizedExperiment(assays = assays, 
                                colData = phy_sampledata,
                                rowData = phy_taxtable
)

Let’s check the different assay names we have.

assayNames(tse)
##  [1] "counts"

A.5.3 Handling different OTU table normalizations in phyloseq vs TreeSE

Adding the assays as a list might seem inconvenient if you only have one type of OTU table (counts in our example), but let’s see why it is actually very convenient to be able to hold multiple assays in one data object.

Here we’ll show an example of how to add relative abundances and CLR normalized OTU tables to your tse assays.

With phyloseq you would need three different phyloseq objects, each taking up 7.7 MB of memory, whilst the tse with the three assays takes up only 18.3 MB.

# Add another assay that holds the relative abundance normalized OTU table
tse <-
  transformAssay(tse, assay.type = "counts", method = "relabundance")
assays(tse) # Let's check
##  List of length 2
##  names(2): counts relabundance

# With phyloseq you would need to have two different phyloseq objects
phy_relab  = transform_sample_counts(phy, function(x)
  x / sum(x))

# Let's add clr transformed data just for the fun of it :)
tse <-
  transformAssay(tse,
                 assay.type = "counts",
                 method = "clr",
                 pseudocount = 1)
assays(tse) # Let's check
##  List of length 3
##  names(3): counts relabundance clr

# With phyloseq you would need to have a third phyloseq object.
# phy_CLR <- microbiome::transform(phy, 'clr') # Example, don't run

A.5.4 Subsetting samples and taxa

Subsetting samples: subset_samples = indexing columns

Next let’s learn how to subset samples. In phyloseq we use subset_samples command, but since the sample data is stored in columns in the TreeSe, we can access it by indexing columns.

In this section we will remove the “Mock” samples and make new data objects.

phy_nomock <-
  subset_samples(phy, !SampleType == "Mock") # Removing mock samples in phyloseq

tse_nomock <-
  tse[,!tse$SampleType == "Mock"] # tse uses indexing columns

Let’s see what we have now.

phy %>% sample_names() %>% length()
##  [1] 26
phy_nomock %>% sample_names() %>% length()
##  [1] 23
colnames(tse) %>% length()
##  [1] 26
colnames(tse_nomock) %>% length()
##  [1] 23

We have removed three samples that where SampleType “Mock”.

Subsetting taxa: subset_taxa = indexing rows

Taxa are stored in rows in TreeSE and the TreeSE equivalent to subset_taxa is indexing rows.

phy_nomock_bacteria <-
  subset_taxa(phy_nomock, Kingdom == "Bacteria")
tse_nomock_bacteria <-
  tse[tse$Kingdom == "Bacteria", ]

phy_nomock_bacteria # We have 19008 taxa (only bacteria) and before 19216
##  phyloseq-class experiment-level object
##  otu_table()   OTU Table:         [ 19008 taxa and 23 samples ]
##  sample_data() Sample Data:       [ 23 samples by 7 sample variables ]
##  tax_table()   Taxonomy Table:    [ 19008 taxa by 7 taxonomic ranks ]
tse_nomock_bacteria 
##  class: TreeSummarizedExperiment 
##  dim: 0 26 
##  metadata(0):
##  assays(3): counts relabundance clr
##  rownames(0):
##  rowData names(7): Kingdom Phylum ... Genus Species
##  colnames(26): CL3 CC1 ... Even2 Even3
##  colData names(7): X.SampleID Primer ... SampleType Description
##  reducedDimNames(0):
##  mainExpName: NULL
##  altExpNames(0):
##  rowLinks: NULL
##  rowTree: NULL
##  colLinks: NULL
##  colTree: NULL

A.5.5 Calculating alpha diversity: estimate_richness = estimateDiversity

Now we know how data stored in TreeSE can be accessed and the TreeSE data objects created. Let’s look at how we can calculate alpha diversity using mia compared to phyloseq package.

The mia command estimateDiversity will return a TreeSE and the results are stored in colData, unlike the phyloseq command that outputs a data frame with just the diversity estimates.

In phyloseq you would need to add the alpha diversity separately to your sample data to keep it safe with the other sample level data.

# Alpha diversity with phyloseq
df <- estimate_richness(phy, measures = "Shannon") 
head(df) # Inspect
##           Shannon
##  CL3     6.576517
##  CC1     6.776603
##  SV1     6.498494
##  M31Fcsw 3.828368
##  M11Fcsw 3.287666
##  M31Plmr 4.289269

# Add Shannon to the sample_data to keep results safe with other sample data
phy_sampledata <- sample_data(phy) %>% data.frame
phy_sampledata$shannon <- df$Shannon
sample_data(phy) <- phy_sampledata
sample_data(phy) %>% head  # Inspect
##          X.SampleID  Primer Final_Barcode Barcode_truncated_plus_T
##  CL3            CL3 ILBC_01        AACGCA                   TGCGTT
##  CC1            CC1 ILBC_02        AACTCG                   CGAGTT
##  SV1            SV1 ILBC_03        AACTGT                   ACAGTT
##  M31Fcsw    M31Fcsw ILBC_04        AAGAGA                   TCTCTT
##  M11Fcsw    M11Fcsw ILBC_05        AAGCTG                   CAGCTT
##  M31Plmr    M31Plmr ILBC_07        AATCGT                   ACGATT
##          Barcode_full_length SampleType
##  CL3             CTAGCGTGCGT       Soil
##  CC1             CATCGACGAGT       Soil
##  SV1             GTACGCACAGT       Soil
##  M31Fcsw         TCGACATCTCT      Feces
##  M11Fcsw         CGACTGCAGCT      Feces
##  M31Plmr         CGAGTCACGAT       Skin
##                                         Description  shannon
##  CL3       Calhoun South Carolina Pine soil, pH 4.9 6.576517
##  CC1       Cedar Creek Minnesota, grassland, pH 6.1 6.776603
##  SV1     Sevilleta new Mexico, desert scrub, pH 8.3 6.498494
##  M31Fcsw    M3, Day 1, fecal swab, whole body study 3.828368
##  M11Fcsw   M1, Day 1, fecal swab, whole body study  3.287666
##  M31Plmr    M3, Day 1, right palm, whole body study 4.289269

For the tse we will need to specify which assay (which normalization of the OTU table) we want to use, since we have three options now with the counts, relative abundance and CLR. We can check the assay names first.

assayNames(tse) # Check the assay names
##  [1] "counts"       "relabundance" "clr"

tse <- estimateDiversity(tse, assay.type = "counts", index = "shannon") # Let's use counts
# Inspect the new colData with added alpha diversity estimate
colData(tse) %>% names # shannon has been added to the colData
##  [1] "X.SampleID"               "Primer"                  
##  [3] "Final_Barcode"            "Barcode_truncated_plus_T"
##  [5] "Barcode_full_length"      "SampleType"              
##  [7] "Description"              "shannon"

If we want to extract a data frame that only has the alpha diversity it can be done easily.

# Extract
df <- colData(tse) %>% data.frame %>% dplyr::select(matches("shannon"))

A.5.6 Calculating beta diversity: ordinate = runMDS

We can calculate PCoA with Bray-Curtis distances in phyloseq using the ordinate command. The beta diversity calculation in mia outputs a TreeSE with a new type of data, reduced dimensions or reducedDim.

Here we will use the scater package that runs the PCoA with runMDS. (PCoA and MDS mean the same thing)

In phyloseq you would again need to add the dimensions to the sample data if you want to keep them safe with other metadata.

# Run PCoA on the relative abundance data and store in phy_ord list
phy_ord <- ordinate(phy_relab, method = "PCoA", distance = "bray")

library(scater)
##  Loading required package: scuttle

# Ordinate with runMDS and implement the vegan's Bray-Curtis dissimilarity distance calculation
tse <- runMDS(tse,
              FUN = vegan::vegdist,
              method = "bray",
              assay.type = "relabundance",
              name = "MDS_bray",
              ncomponents = 10) # Let's also define how many dimensions
tse # Inspect, now we have new reducedDim "MDS_bray"
##  class: TreeSummarizedExperiment 
##  dim: 19216 26 
##  metadata(0):
##  assays(3): counts relabundance clr
##  rownames(19216): 549322 522457 ... 200359 271582
##  rowData names(7): Kingdom Phylum ... Genus Species
##  colnames(26): CL3 CC1 ... Even2 Even3
##  colData names(8): X.SampleID Primer ... Description shannon
##  reducedDimNames(1): MDS_bray
##  mainExpName: NULL
##  altExpNames(0):
##  rowLinks: NULL
##  rowTree: NULL
##  colLinks: NULL
##  colTree: NULL

A.5.7 Plotting ordinations: plot_ordination = plotReducedDim

phyloseq has it’s own plotting fuction for ordinations.

plot_ordination(physeq = phy, ordination = phy_ord, color = "SampleType")

It is also easy to plot the ordination stored in reducedDim in the tse using the plotReducedDim function. We can first check what the name of the Bray-Curtis MDS/PCoA was incase we forgot.

# Check reduced dim names
reducedDimNames(tse)
##  [1] "MDS_bray"

Ok, let’s plot.

# Plot
plotReducedDim(tse, "MDS_bray", color_by = "SampleType")


# The sign is given arbitrarily. We can change it to match the plot_ordination
reducedDim(tse)[, 1] <- -reducedDim(tse)[, 1]
reducedDim(tse)[, 2] <- -reducedDim(tse)[, 2]
plotReducedDim(tse, "MDS_bray", color_by = "SampleType")

A.5.8 Agglomerating taxa: tax_glom=mergeFeaturesByRank

Often you might want to study your data using different taxonomic ranks, for example check if you see differences in the abundances of higher taxonomic levels.

phy_fam <- tax_glom(phy, taxrank = "Family")

This family level data object can again be conveniently stored in a tse object under altExp.

Tax_glom removes the taxa which have not been assigned to the level given in taxrank by default (NArm = TRUE). So we will add the onRankOnly = TRUE to mergeFeaturesByRank function which is equivalent to the default behaviour of tax_glom.

altExp(tse, "Family") <-
  mergeFeaturesByRank(tse,
                      rank = "Family",
                      onRankOnly = TRUE, # Let's add the equivalent option to NArm =TRUE
                      agglomerateTree = TRUE)
##  Warning in .local(x, ...): 'agglomerateByRank' is deprecated.
##  Use 'mergeFeaturesByRank' instead.
##  See help("Deprecated") and help("Now agglomerateByRank is deprecated. Use mergeFeaturesByRank instead.-deprecated").
##  Warning: 'clr' includes negative values.
##  Agglomeration of it might lead to meaningless values.
##  Check the assay, and consider doing transformation again manually with agglomerated data.
altExp(tse, "Family")
##  class: TreeSummarizedExperiment 
##  dim: 334 26 
##  metadata(1): agglomerated_by_rank
##  assays(3): counts relabundance clr
##  rownames(334): Sulfolobaceae SAGMA-X ... Dethiosulfovibrionaceae
##    Thermodesulfobiaceae
##  rowData names(7): Kingdom Phylum ... Genus Species
##  colnames(26): CL3 CC1 ... Even2 Even3
##  colData names(8): X.SampleID Primer ... Description shannon
##  reducedDimNames(1): MDS_bray
##  mainExpName: NULL
##  altExpNames(0):
##  rowLinks: NULL
##  rowTree: NULL
##  colLinks: NULL
##  colTree: NULL

A.5.9 Cheatsheet

library(knitr)
df <-
  data.frame(
    Functionality = c(
      "Access sample data", # Row 1
      "Access tax table", # Row 2
      "Access OTU table", 
      "Build data object",
      "Calculate alpha diversity",
      "Calculate beta diversity",
      "Plot ordination",
      "Subset taxa",
      "Subset samples",
      "Aggromerate taxa"
    ),
    phyloseq = c(
      "sample_data()",
      "tax_table()",
      "otu_table()",
      "phyloseq()",
      "estimate_richness()",
      "ordinate()",
      "plot_ordination()",
      "subset_taxa()",
      "subset_samples()",
      "tax_glom()"
    ),
    miaTreeSE = c(
      "Index columns",
      "Index rows",
      "assays()",
      "TreeSummarizedExperiment()",
      "estimateDiversity()",
      "runMDS()",
      "plotReducedDim()",
      "Index rows",
      "Index columns",
      "mergeFeaturesByRank()"
    )
  )

df2 <-
  data.frame(
    Data_type = c("OTU table", # Row 1
                  "Taxonomy table", # Row2
                  "Sample data table"), # Row 3
    phyloseq = c("otu_table", # Row 1
                 "tax_table", # Row2
                 "sample_data"),# Row 3
    TreeSE = c("assay", # Row 1
               "rowData", # Row2
               "colData") # Row 3
  )
kable(df)
Functionality phyloseq miaTreeSE
Access sample data sample_data() Index columns
Access tax table tax_table() Index rows
Access OTU table otu_table() assays()
Build data object phyloseq() TreeSummarizedExperiment()
Calculate alpha diversity estimate_richness() estimateDiversity()
Calculate beta diversity ordinate() runMDS()
Plot ordination plot_ordination() plotReducedDim()
Subset taxa subset_taxa() Index rows
Subset samples subset_samples() Index columns
Aggromerate taxa tax_glom() mergeFeaturesByRank()
kable(df2)
Data_type phyloseq TreeSE
OTU table otu_table assay
Taxonomy table tax_table rowData
Sample data table sample_data colData
Back to top